Combine Locality with Globality: Online Stock
Selection with Multi-Scale and Multi-Entity
Learning

grapeot

Abstract—Most algorithms to solve stock selection problem
treat each stock either as entirely independent or with no
discriminations. In this report, we provide a novel stock selection
approach both responsive to recent changes and robust to noise,
by combining the local and global views towards stock data.
We first cluster the stocks, extract prices, volumes and their first
derivatives as feature vectors in multiple temporal scales for each
cluster, and then employ Support Vector Regression Machine to
predict prices for each cluster as well as each scale, which are
fused together for stock selection. According to the experiments,
our approach can achieve state-of-the-art average annual return
rates.

I. INTRODUCTION

The problem of how to select stocks to form a promising
portfolio to achieve a high return rate is interesting as well as
useful, thus draws intensive research work in machine learning
field. There are mainly two perspectives. One of them is to
treat the stock prices as a time series, and try to predict future
prices with regression approaches such as Gaussian Process
[3] or Hidden Markov Model [5]. And the other is to learn
the correlations between recent price changing patterns and
future prices of stocks, thus to select stocks based on predicted
prices. Typical approaches include Artificial Neural Network
[6], Competitive Learning [10] and Support Vector Machine
[2].

However, most of the conventional algorithms simply ignore
the correlations among stocks or the long-term price changing
trends, which causes them inaccurate or vulnerable to noise.
In this report, we aim to provide a new approach for stock
selection problem, both robust and accurate enough to noisy
data in stock market, by taking the correlations among stocks
and trends within a long-term interval into consideration. This
report is organized as follows. The stock selection problem
is first formulated in Sec. II, and our approach is provided
in Sec. III. Related experiment methodology and results are
shown in Sec. IV, followed by the conclusion in Sec. V.

II. PROBLEM FORMULATION

The stock selection problem is how to build a portfolio to
get the best return rate after a given time. To make it clear in
machine learning, we make some reasonable presuppositions.
Since the trading fee varies from different brokers, we don’t
select a certain broker or method for fee calculation, but
mainly concentrate on the return rates without trading fees.
And we adopt a timely-rebuilding trading strategy here, i.e.
maintaining a fixed-size portfolio from beginning to the end,

selling out all the stocks and reselecting stocks to rebuild the
portfolio after every time unit.

Therefore, the input of the problem is historical data of
the stocks, including prices and volumes. And the output is a
sequence of stock sets to select for each time unit, which is
expected to gain the best return rate.

III. APPROACH
A. Overview

As Fig. 1 shows, the algorithm can be divided into two
stages. It first tries to predict the return rate of each stock,
and at second stage, it will build a portfolio based on the
predictions.

To optimize the comprehensive return rate, the portfolio
builder uses a greedy strategy. It takes the top n stocks with
the largest expected return rate, divides the fund into n even
parts, and uses each portion to buy one selected stock thus to
form the portfolio, in which n is the portfolio size.

Therefore, the core part of the algorithm is how to predict
the return rates. Here we try to solve this time series predic-
tion problem based on Support Vector Regression (SVR) [7]
framework. First we extract feature vectors from the historical
data, and then use the feature vectors and corresponding return
rates to train an SVR machine. When predicting, we use the
feature vectors extracted from recent stock data to test, and get
expected return rates from the SVR machine. The overview of
the prediction framework is as Fig. 2 shows.

The reason why we choose SVR is, it is a powerful linear
regression model, which can cover traditional linear models in
time series prediction such as Autoregressive Moving Average
or Kalman Filtering. In addition, it can be easily extended to
nonlinear data by introducing kernels.

B. Local pattern features

Considering recent price changes have a larger effect on
future stock prices, we take a local perspective on this pre-
diction problem as the baseline, i.e. the future price is mainly
determined by a recent sequence of prices and volumes. Based
on this motivation, we use a sliding window to slice the
historical data into segments, extract a feature vector from
each segment, and train an SVR to discover the correlation
between local patterns and return rates.

According to the experiment results in [4], first derivative
of prices and volumes perform well in stock-related problems.

Stock return rate

—Recent stock data—m| A
predictor

A

Historical stock

data

Fig. 1.

——Historical data—w| Feature extraction

——Expected return rate for stocks—m

Portfolio builder |—Portfolio—

Algorithm overview

25,
(D @
o“”fe:/"o
(%
C‘(D,.
¥ Support Vector .
. ——~Predicted return rates—m
Regression
and o
qes? o
e
ed

Recent data—w| Feature extraction

Fig. 2.

So for each local window (p1, ..., Prm; V1, -.., U), We first nor-
malize the prices, volumes and their first derivatives separately,
and then concatenate them together as the feature vector. The
return rate is also calculated as (py,+1 — Pm)/Pm, Where p;
and v; stand for the prices and volumes respectively, and m is
the window length. In prediction process, we only adopt the
most recent window and extract the feature vector with the
same method to pass to SVR machine.

C. Multi-scale learning

Although local pattern features introduced above can de-
scribe how stock data changes, its performance is highly
related to the length of the sliding window. When the window
length gets larger, the feature vector reveals price changes in
a longer period, thus the noise in the data will be smoothed
and we can get a more stable regression result. However, this
result is not responsive enough. No matter how the stock price
changes recently, this change can only affect a small portion
of the feature vector, and is usually ignored in the regression.
Similarly, if we use a small window, the regression result will
be responsive enough, and also sensitive to noise in stock
market.

This requires us to adopt a global view in temporal space.
To enable our predictor to respond the market changes timely,
and also robust to noises, we introduce multi-scale learning.
The motivation is to fuse the regression result with different
window lengths together to get better result. We first train n
SVR machines with different window lengths [y, ...,1,, use
them to predict future return rates of a stock as rq, ...,7,, and
calculate the final result by fusing them linearly with different
weights wy, ..., wy,, i.e. 7 = Y, r;w;. With this multi-scale
learning, we can extend the window length to a large value to
overcome the inherent sensitivity to noises of local perspective
while still preserve its responsiveness to latest data dynamics.

Overview of return rate predictor

D. Multi-entity learning

Until now, we are simply collecting feature vectors from
all the stocks, and put them together into one single SVR
machine. Although this approach can capture the common
relations between historical and future prices, it lacks discrim-
ination towards each stock, thus will have errors for each stock
more or less.

A characteristic can help reduce this error, i.e. the stocks
can be divided into several typical clusters. Fig. 3 shows the
normalized prices of two stock clusters. We can observe that
the price changing patterns are similar inside one cluster, but
apparently different between clusters. Therefore this structure
information can be used to improve prediction accuracy. If
we split all the stocks into clusters, and train SVR machines
separately, we can expect the SVR machines be more perti-
nent to corresponding cluster, thus can make more accurate
predictions. For clustering, we employ Spectral Clustering [9]
here, and use the correlations among normalized stock prices
and volumes as the similarity metrics.

E. Online update

Within the process of stock trading, the market is also
changing itself. On the one hand, our prediction model is
getting out of date, on the other hand, we are gathering
more and more information. So it is reasonable to update the
regression model timely with the newly-came stock data. Here
we maintain a training window. With time passing, we discard
out-dated data, and adopt newly-fetched data to form a fixed-
length data set which will be used to retrain the SVR machines.

IV. EXPERIMENTS AND DISCUSSION
A. Dataset and methodology

To evaluate our stock selection algorithm, we use the
stocks from Standard&Poor 500 Index. The data includes

Stock Cluster 1

price

price

Two stock clusters

Fig. 3.

weekly prices {p;}1%) and volumes {v;}#% in the latest 400
weeks until Dec. 2010. We take that in first 200 weeks as
initial training data, and execute our trading algorithm on the
following 200 weeks. To make the evaluation clearer, we set
the initial fund as $100, and allow the algorithm to buy less
than one share (for example, it can buy 0.2 share of a stock).
Therefore, from the 201st week, the algorithm will determine
which stocks to buy. In the next week, it will know the the
prices and volumes of all the stocks last week (i.e. 201st week)
and how much money it holds now, based on which it makes
another decision. This process will repeat until hitting the
end of the data. Thus we can get a sequence of how much
money the algorithm holds in each week {m;}?%9, and the
annual return rate starting from week ¢ can be calculated as
(mirs2 — m;)/m; (one year is treated as 52 weeks). The
performance of the algorithm is then evaluated by the average

annual return rate (AARR)

200—-52
M52 — My

1
AARR = ——
200 — 52 z; m;

We employed LibSVM [1] to implement the SVR machine
and SpectralLIB [8] for spectral clustering.

B. Experiment results

With the methodology mentioned above, we test all our
algorithms, from the baseline SVR with pure local pattern
features to the algorithm with online updating, multi-scale and
multi-entity learning. The algorithms are first executed with
different settings of parameters, including the local window
length, portfolio size, and cluster number in multi-entity learn-
ing, and the best performance is reported for each algorithm.
We also adopt a random stock selector for comparison here.
The performance of each algorithm is listed in Table I and
Fig. 4.

From the result, we can see the simplest baseline outper-
forms the random selector obviously, and by combining online

25
20
15
S
g 10
<
<
5
T
- 1 2 3 4 5
Algorithm #

Fig. 4. Evaluation results for stock selection algorithms. Please refer to Table
I to get corresponding description for each algorithm #.

updating, multi-scale and multi-entity learning, we can get
a even better result, average annual return rate as 21.72%.
Considering 1.32% as the annual return rate reported by
Robert et. al. in KDD ’07 [10], we have got a state-of-the-
art result.!

V. CONCLUSION

From the previous analysis and experiments, we can draw
the conclusion that the motivation to combine locality and
globality of stock data is effective in stock selection prob-
lems. The future work may be two-fold. One is to do more
visualization and analysis work on stock data, trying to find
more properties which can be used in price prediction and
stock selection. The second is to introduce nonlinearity with
kernels in the SVR framework and observe whether this will
improve the performance.

REFERENCES

[1] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector
machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm.

[2] A. Fan and M. Palaniswami. Stock selection using support vector
machines. In Neural Networks, 2001. Proceedings. IJCNN ’01. Inter-
national Joint Conference on, 2001.

[3] M. Farrell and A. Correa. Gaussian Process Regression Models for
Predicting Stock Trends. pages 1-9, 2007.

[4] M. Gavrilov, D. Anguelov, P. Indyk, and R. Motwani. Mining The Stock
Market: Which Measure Is Best? In In proceedings of the 6 th ACM Int’l
Conference on Knowledge Discovery and Data Mining, pages 487-496,
2000.

[5] M. Hassan and B. Nath. Stock market forecasting using hidden markov
model: a new approach. In Intelligent Systems Design and Applications,
2005. ISDA ’05. Proceedings. 5th International Conference on, pages
192 — 196, 2005.

T have checked the code carefully to avoid over-fitting, and will keep
tracking the return with real data in the following several months to ensure
the reported result is correct.

TABLE I
EVALUATION RESULTS FOR STOCK SELECTION ALGORITHMS.

Algorithm AARR
1 Random -1.76%
2 SVR 18.50%
3 Online updating SVR 19.06%
4 Online updating SVR with multi-entity learning 20.16%
5 | online updating SVR with multi-scale and multi-entity learning | 21.72%

[6] T. Kimoto, K. Asakawa, M. Yoda, and M. Takeoka. Stock market
prediction system with modular neural networks. In Neural Networks,
1990., 1990 IJCNN International Joint Conference on, pages 1 —6 vol.1,
June 1990.

[71 A.J. Smola and B. Scholkopf. A tutorial on support vector regression.
Statistics and Computing, 14:199-222, 2004.

[8] D. Verma and M. Meila. Spectralib - package for symmetric spectral
clustering, 2001. http://www.stat.washington.edu/spectral/.

[9] U. von Luxburg. A tutorial on spectral clustering. Statistics and
Computing, 17:395-416, 2007.

[10] R. J. Yan and C. X. Ling. Machine learning for stock selection.
Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD 07, page 1038, 2007.

